Graphene field effect transistor without an energy gap.
نویسندگان
چکیده
Graphene is a room temperature ballistic electron conductor and also a very good thermal conductor. Thus, it has been regarded as an ideal material for postsilicon electronic applications. A major complication is that the relativistic massless electrons in pristine graphene exhibit unimpeded Klein tunneling penetration through gate potential barriers. Thus, previous efforts to realize a field effect transistor for logic applications have assumed that introduction of a band gap in graphene is a prerequisite. Unfortunately, extrinsic treatments designed to open a band gap seriously degrade device quality, yielding very low mobility and uncontrolled on/off current ratios. To solve this dilemma, we propose a gating mechanism that leads to a hundredfold enhancement in on/off transmittance ratio for normally incident electrons without any band gap engineering. Thus, our saw-shaped geometry gate potential (in place of the conventional bar-shaped geometry) leads to switching to an off state while retaining the ultrahigh electron mobility in the on state. In particular, we report that an on/off transmittance ratio of 130 is achievable for a sawtooth gate with a gate length of 80 nm. Our switching mechanism demonstrates that intrinsic graphene can be used in designing logic devices without serious alteration of the conventional field effect transistor architecture. This suggests a new variable for the optimization of the graphene-based device--geometry of the gate electrode.
منابع مشابه
Quantum modeling of light absorption in graphene based photo-transistors
Graphene based optical devices are highly recommended and interested for integrated optical circuits. As a main component of an optical link, a photodetector based on graphene nano-ribbons is proposed and studied. A quantum transport model is presented for simulation of a graphene nano-ribbon (GNR) -based photo-transistor based on non-equilibrium Green’s function method. In the proposed model a...
متن کاملA Computational Study on the Performance of Graphene Nanoribbon Field Effect Transistor
Despite the simplicity of the hexagonal graphene structure formed by carbon atoms, the electronic behavior shows fascinating properties, giving high expectation for the possible applications of graphene in the field. The Graphene Nano-Ribbon Field Effect Transistor (GNRFET) is an emerging technology that received much attention in recent years. In this paper, we investigate the device performan...
متن کاملTunable band gap in few-layer graphene by surface adsorption
There is a tunable band gap in ABC-stacked few-layer graphene (FLG) via applying a vertical electric field, but the operation of FLG-based field effect transistor (FET) requires two gates to create a band gap and tune channel’s conductance individually. Using first principle calculations, we propose an alternative scheme to open a band gap in ABC-stacked FLG namely via single-side adsorption. T...
متن کاملHydrogenated monolayer graphene with reversible and tunable wide band gap and its field-effect transistor
Graphene is currently at the forefront of cutting-edge science and technology due to exceptional electronic, optical, mechanical, and thermal properties. However, the absence of a sizeable band gap in graphene has been a major obstacle for application. To open and control a band gap in functionalized graphene, several gapping strategies have been developed. In particular, hydrogen plasma treatm...
متن کاملElectro-oxidized epitaxial graphene channel field-effect transistors with single-walled carbon nanotube thin film gate electrode.
We report the effect of electrochemical oxidation in nitric acid on the electronic properties of epitaxial graphene (EG) grown on silicon carbide substrates; we demonstrate the availability of an additional reaction channel in EG, which is not present in graphite but which facilitates the introduction of the reaction medium into the graphene galleries during electro-oxidation. The device perfor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 22 شماره
صفحات -
تاریخ انتشار 2013